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LETTER TO THE EDITOR 

A new real space renormalisation method and its Julia set 

B Derrida and H Flyvbjerg 
Service de Physique Thkorique, C E N  Saclay 91 191 Cif-sur-Yvette Cedex, France 

Received 14 January 1985 

Abstract. We introduce a new real space renormalisation method which is valid not only 
on the real axis but also everywhere in the complex plane of temperatures. The method 
requires the knowledge of the partition function on small lattices and can in principle be 
improved systematically. We test this method on the two-dimensional Ising model. We 
find that it gives a satisfactory picture for the set of zeros of the partition function. When 
restricted to the real axis, the estimates for the renormalisation transformation, the critical 
point and the thermal exponent are also very good. 

Real space renormalisation methods (Burkhardt and van Leeuwen 1982 and references 
therein) have become a very useful way of understanding the phase diagrams and the 
critical properties of models of statistical mechanics. Some of them are very simple 
but not very accurate (like the Migdal-Kadanoff method). Others (like the Kadanoff 
variational method) are more sophisticated and give in a lot of cases good estimates 
of the critical exponents. Yet others (like the phenomenological renormalisation or 
the Monte Carlo renormalisation based on block spin calculations) can in principle 
be improved in a systematic way. Thus there exist at present several satisfactory methods 
to calculate the critical properties of sufficiently simple models like the Ising model. 
However, with these methods it is difficult to study the whole set of singularities of 
the free energy in the complex plane of temperatures. In order to justify this assertion 
we discuss these methods one at a time: the Monte Carlo method is very well suited 
for complex probabilities. The phenomenological renormalisation (Nightingale 1982) 
which requires the calculation of the two largest eigenvalues of the transfer matrix 
suffers from the difficulty that when the temperature moves to the complex plane, the 
eigenvalues may cross and therefore the renormalisation transformation or its derivative 
is not defined along the lines where the eigenvalues cross. Block spins methods are 
also well adapted to describe the ferromagnetic transition but need modification to 
describe antiferromagnetic order and therefore has little chance to work everywhere 
in the complex plane. 

Recently it has been shown that on hierarchical lattices, for which one can write 
an exact real space renormalisation transformation, the knowledge of the real space 
renormalisation was sufficient to produce the whole set of zeros of the partition function: 
the result was that the Julia set of the renormalisation transformation is the accumulation 
set of the zeros of the partition function (Derrida et a1 1983, Itzykson and Luck 1984, 
Peitgen et a1 1984). One may then ask whether for usual Bravais lattices one can 
construct approximate real space renormalisations, the Julia sets of which approximate 
the entire set of zeros of the partition function in the complex plane. 
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The purpose of the present letter is to give a positive answer to that question. Let 
us consider for example an Ising model on a &dimensional lattice. The Hamiltonian 
of this Ising model is 

where there is a spin Si = k l  on each lattice site and the sum runs over the pairs of 
nearest neighbours on the lattice. Let us define t as 

t = tanh PJ. (2) 

The real space renormalisation method that we propose in order to produce the 
whole set of zeros as the Julia set of the renormalisation transformation is the following 

where ZN is the partition function of a finite lattice of N sites with periodic boundary 
conditions ( N  = Id  and 1 is the linear dimension of the lattice). Equation (3 )  defines 
a transformation t --f t’ associated with a change of scale 6. 

In this letter we shall first try to explain why (3) is a very plausible real space 
renormalisation. Then, we shall test the method on the two-dimensional Ising model 
on a square lattice. We shall first look at its predictions for the critical point and the 
critical exponent OR the real axis. Then we shall look at the shape of the renormalisation 
transformation. Finally we shall give pictures of the Julia set associated with the 
renormalisation transformation (3) and compare it with the known exact results (Fisher 
1964). The denomination ‘Julia set’ is slightly abusive here, since t’ is a multi-valued 
function of t. 

Let us first start by seeing how ( 3 )  can be derived. If one defines f( t )  as the free 
energy per site at temperature t ,  the result of any real space renormalisation t +  t’ 
associated with a change of scale of ratio 6 is to relate f ( t )  to f ( t ‘ )  by a formula of 
the following form 

f(t) = ( I /  bd If( t ‘> + At) (4) 

where g( t )  can usually be calculated by the renormalisation procedure. If we multiply 
equation (4) by N (the number of sites in the lattice) and if one takes the exponential, 
one ends up with the following formula 

Z N ( ~ )  = ZNIbd(f ’ )  exp(Ng(t)). ( 5 )  

What we want to do is to build a relationship between t and t‘ from the knowledge 
of the partition functions Z N (  t ) .  Obviously this is not possible since we do not know 
U priori what function g( t )  to choose. We can avoid that difficulty by writing equation 
(3) twice and by eliminating the function g ( t ) .  If one rewrites ( 5 )  as 

Z N I V + ( ~ )  = Z N / P ( ~ ’ )  exp(Ng(t) lbd)  (6) 

one sees easily that by taking the ratio of ( 5 )  and ( 6 )  taken to the power bd,  one can 
eliminate the function g( t )  and one ends up with the renormalisation formula (3). 

At this stage it is useful to make an important comment: formula ( 3 )  works only 
because of finite size effects. In some sense, it is a finite size scaling formula. Let us 
restrict ourselves for the moment to the case of real temperatures. We write (3 )  in the 
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following way 

fN(  t )  -fN/bd( t )  = ( l/bd)[fN/bd ( t ’ )  -fN/bZd ( t ’ ) ]  (7) 

where fN( t )  is the free energy per site of a finite lattice of N = Id sites. Finite size 
scaling (Barber 1983) tells us that the free energy fN should approach fa near the 
critical point in the following way: 

fa(f) -fN(t)-(l/ld)H(I/S(t)) (8) 

,f( t )  is the correlation length of the infinite lattice at temperature t. If we replace f by 
(8) in (7), one finds that (( t )  and t( t ’ )  should be related by the following relationship 

t( t )  = bS( t ‘ )  (9) 

and this is exactly what should give a perfect real space renormalisation for real 
temperatures. Of course since (8) should be valid only near the ferromagnetic transition 
point t ,  and for large lattices, the renormalisation procedure should in principle become 
better and better when one increases N. 

Let us now discuss the case of complex temperatures. The formula (3) contains 
as an input the partition functions ZN of three lattices of different sizes. Since all 
these partition functions are polynomials in the variable t, the real axis of temperatures 
does not play any special role. Therefore, we think that there is no reason why (3) 
should give better results on the real axis than anywhere else in the complex plane of 
temperatures. 

Another attractive aspect of formula (3) is that when applied to hierarchical lattices 
(Derrida et a1 1983), it gives the exact renormalisation transformation for any finite 
value of N. Hence, for hierarchical lattices there is no room for further improvement 
of the method by increasing N. 

In order to test the efficiency of the renormalisation method (3), in the remainder 
of this letter we apply it to the two-dimensional Ising model on the square lattice. For 
this model Z N ( t )  is known exactly for any lattice from the Onsager solution 

(2i - 1 ) ~  
+ i j =  5 I [,-,(,os +cos 

where A = ( 1  + t 2 )4  and B = 4t2( 1 - t 2 ) 2 .  This formula which gives Z as a polynomial 
in t (except a trivial factor which disappears in formula (3))  can be obtained after some 
manipulation from the partition function given in McCoy and Wu (1973). It is valid 
for a square of even size 1 with periodic boundary conditions. 

We hope in the future to study also other models like the 2~ Potts model or 3~ 

king model. But for these models, since the partition functions Z, are not known 
for arbitrary large N, the only hope we can have is that the formula (3) used for N 
relatively small will give a rather satisfactory picture of the set of singularities in the 
complex plane. Of course we are conscious that any improvement would require the 
calculation of the partition function on larger lattices, and we know that this is far 
from being an easy task. 
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Let us now first look at what is the prediction of formula (3) for the location of 
the critical point t ,  and of the thermal exponent 2yt = A. For each choice of N, formula 
(3) leads to estimates t i N )  and A ( N )  for t ,  and A. They are obtained by solving 
numerically the following equation 

where the derivative in (12) can easily be calculated from the implicit function t + t' 
defined by (3). Our re_sults for 6 = 2 are shown in table 1 and can be compared with 
the exact values tc = J 2  - 1 and A = 2. 

Table 1. Values of 1, and A obtained from equations ( 1  1 )  and (12) for increasing lattice sizes. 

8 
16 
32 
64 

I28 
256 

8 x 8  no real fixed point 
16x16 0.418 236 91 1 1.8505 
32x32 0.414 546 967 1.9781 
64 X64 0.414 251 685 1.995 I 

I28 x I28 0.414218 187 1.9988 
256 x 256 0.414 214 134 1.9997 

Exact value 0.414 213 562 2 

We see that the results converge very well to their expected values. The critical 
point converges like 1/13 and the thermal exponent like 1 / 1 2  so the convergence is as 
good as the convergence obtained in phenomenological renormalisation (Derrida and 
De Seze 1982). 

We should however point out that for small size 1 = 8, there is no fixed point on 
the real axis. 

In principle from (3 ) ,  one can draw t' as a function of t for any choice of N and 
b. In figure 1, we give the curves obtained for b = 2 and N = 162 and 32*. It is striking l.om 0.8 

1 0  I 1 

08 
(a1 

- .. 

/ 

t f 

Figure 1. The curves f + I' obtained from ( 3 )  for b = 2 and N = 16 x 16 (figure I(a)) and 
N = 3 2 X 3 2  (figure l ( b ) )  is shown as full lines. The dashed line in figure l (a )  represents 
the exact real space renormalisation 5( t )  = 25( 1 ' ) .  
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that t’ is not a single valued function of t. This is due to the fact that (3) gives t’ 
implicitly. We see also that near the repulsive fixed point, there is an attractive one. 
The shape of the curve t + t ‘  has roughly the shape expected, except for its horizontal 
and vertical branches, the physical origin of which we do not understand. Anyhow, 
by comparing the curves for N = 162 and 32* we see that the shape looks more and 
more what one expects for a good real space renormalisation: two attractive fixed 
points at t = 0 and t = 1 and an unstable fixed point at t,. For comparison we show 
as a broken line in figure l ( a )  the function t +  t’ obtained from [ ( t )  = 2[(t‘), where 
[( t )  is the exact correlation length. This broken line is in principle an exact real space 
renormalisation. We see that our curves are very close to it; as a matter of fact, in 
figure 1 (b )  we would not be able to distinguish it from our curves. 

We can now look at the shape of the set of singularities in the complex plane which 
can be obtained from the renormalisation transformation (3). 

The main idea to extract the whole set of singularities from the knowledge of a 
renormalisation transformation t + t’ is that pre-images of singularities must be sin- 
gularities (Derrida et al 1983). So the set of singularities can be obtained by iterating 
backwards the renormalisation transformation (see Derrida et a1 1983). The way 
pictures can be produced is by starting with any point t’ in the complex plane. Then, 
one finds all the pre-images of t’ by (3), i.e. all the roots t of equations (3). One chooses 
one of these roots at random, then one calculates all the pre-images of t by (3) and 
one repeats this procedure again and again. After a few iterations, all the points 
produced by this method are on the Julia set of the renormalisation transformation. 

We show on figure 2 the pictures obtained in the complex plane of the variable t 
by drawing the Julia set associated with the transformation (3) for several N = 8’ figure 
l ( a )  and N = 16’ figure l (b ) .  The calculation of these Julia sets is numerically 
demanding and this is why we did not draw them for larger lattices. 

We see that the Julia sets roughly follow the known exact results (the two circles). 
Moreover, by comparing figures 2(a)  and 2(b), one sees that the points of the Julia 
set are closer to the two circles for N = 162 than for N = 82. Therefore we think that 
increasing N would improve the pictures and in the limit N + a, the Julia set should 
reduce to the two circles. 

( 0 )  2.4.  ‘b’ 

- 1.2: 
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Figure 2. The Julia set of the renormalisation ( 3 )  for b = 2 and N = 8 X 8 (figure 2 ( a ) )  and 
N = 16 x 16 (figure 2 ( b ) ) .  On each figure the two circles represent the exact known results. 
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In this letter we have introduced a new real space renormalisation method which 
is able to work in the whole complex plane of temperatures. This method requires the 
knowledge of the partition function of finite lattices of three different sizes. We believe 
that it should be easy to generalise our calculation to cases where the scaling factor 6 
is not an integer. 

It might be a problem to use other boundary conditions than periodic ones because 
we have seen that to justify (3) one needs finite size scaling and it is not obvious 
whether with free boundary conditions the finite size scaling would not be buried in 
surface effects. 

It would be interesting to understand the origin of the vertical and horizontal 
branches that we see on figure 1, and to know whether they have any physical meaning 
or are artefacts of our method. 

It would be interesting to build other real space renormalisations which would 
require the knowledge of properties of only two lattices. The reason is that, even if 
(3) is in principle very simple, the method is very limited by the fact that for most 
models, the calculation of 2, can only be done for a very few sizes. 

Partial support from the French Foreign Ministry and the Danish Research Council 
is acknowledged by HF. 
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